Metamath Proof Explorer


Theorem lincresunit1

Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b B = Base M
lincresunit.r R = Scalar M
lincresunit.e E = Base R
lincresunit.u U = Unit R
lincresunit.0 0 ˙ = 0 R
lincresunit.z Z = 0 M
lincresunit.n N = inv g R
lincresunit.i I = inv r R
lincresunit.t · ˙ = R
lincresunit.g G = s S X I N F X · ˙ F s
Assertion lincresunit1 S 𝒫 B M LMod X S F E S F X U G E S X

Proof

Step Hyp Ref Expression
1 lincresunit.b B = Base M
2 lincresunit.r R = Scalar M
3 lincresunit.e E = Base R
4 lincresunit.u U = Unit R
5 lincresunit.0 0 ˙ = 0 R
6 lincresunit.z Z = 0 M
7 lincresunit.n N = inv g R
8 lincresunit.i I = inv r R
9 lincresunit.t · ˙ = R
10 lincresunit.g G = s S X I N F X · ˙ F s
11 eldifi s S X s S
12 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S 𝒫 B M LMod X S F E S F X U s S I N F X · ˙ F s E
13 11 12 sylan2 S 𝒫 B M LMod X S F E S F X U s S X I N F X · ˙ F s E
14 13 fmpttd S 𝒫 B M LMod X S F E S F X U s S X I N F X · ˙ F s : S X E
15 3 fvexi E V
16 difexg S 𝒫 B S X V
17 16 3ad2ant1 S 𝒫 B M LMod X S S X V
18 17 adantr S 𝒫 B M LMod X S F E S F X U S X V
19 elmapg E V S X V s S X I N F X · ˙ F s E S X s S X I N F X · ˙ F s : S X E
20 15 18 19 sylancr S 𝒫 B M LMod X S F E S F X U s S X I N F X · ˙ F s E S X s S X I N F X · ˙ F s : S X E
21 14 20 mpbird S 𝒫 B M LMod X S F E S F X U s S X I N F X · ˙ F s E S X
22 10 21 eqeltrid S 𝒫 B M LMod X S F E S F X U G E S X