Metamath Proof Explorer


Theorem lincresunit1

Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b B=BaseM
lincresunit.r R=ScalarM
lincresunit.e E=BaseR
lincresunit.u U=UnitR
lincresunit.0 0˙=0R
lincresunit.z Z=0M
lincresunit.n N=invgR
lincresunit.i I=invrR
lincresunit.t ·˙=R
lincresunit.g G=sSXINFX·˙Fs
Assertion lincresunit1 S𝒫BMLModXSFESFXUGESX

Proof

Step Hyp Ref Expression
1 lincresunit.b B=BaseM
2 lincresunit.r R=ScalarM
3 lincresunit.e E=BaseR
4 lincresunit.u U=UnitR
5 lincresunit.0 0˙=0R
6 lincresunit.z Z=0M
7 lincresunit.n N=invgR
8 lincresunit.i I=invrR
9 lincresunit.t ·˙=R
10 lincresunit.g G=sSXINFX·˙Fs
11 eldifi sSXsS
12 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S𝒫BMLModXSFESFXUsSINFX·˙FsE
13 11 12 sylan2 S𝒫BMLModXSFESFXUsSXINFX·˙FsE
14 13 fmpttd S𝒫BMLModXSFESFXUsSXINFX·˙Fs:SXE
15 3 fvexi EV
16 difexg S𝒫BSXV
17 16 3ad2ant1 S𝒫BMLModXSSXV
18 17 adantr S𝒫BMLModXSFESFXUSXV
19 elmapg EVSXVsSXINFX·˙FsESXsSXINFX·˙Fs:SXE
20 15 18 19 sylancr S𝒫BMLModXSFESFXUsSXINFX·˙FsESXsSXINFX·˙Fs:SXE
21 14 20 mpbird S𝒫BMLModXSFESFXUsSXINFX·˙FsESX
22 10 21 eqeltrid S𝒫BMLModXSFESFXUGESX