Metamath Proof Explorer


Theorem lindff

Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis lindff.b B=BaseW
Assertion lindff FLIndFWWYF:domFB

Proof

Step Hyp Ref Expression
1 lindff.b B=BaseW
2 simpl FLIndFWWYFLIndFW
3 rellindf RelLIndF
4 3 brrelex1i FLIndFWFV
5 eqid W=W
6 eqid LSpanW=LSpanW
7 eqid ScalarW=ScalarW
8 eqid BaseScalarW=BaseScalarW
9 eqid 0ScalarW=0ScalarW
10 1 5 6 7 8 9 islindf WYFVFLIndFWF:domFBxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
11 4 10 sylan2 WYFLIndFWFLIndFWF:domFBxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
12 11 ancoms FLIndFWWYFLIndFWF:domFBxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
13 2 12 mpbid FLIndFWWYF:domFBxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
14 13 simpld FLIndFWWYF:domFB