Metamath Proof Explorer


Theorem lindfres

Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion lindfres WLModFLIndFWFXLIndFW

Proof

Step Hyp Ref Expression
1 coires1 FIdomFX=FdomFX
2 resdmres FdomFX=FX
3 1 2 eqtri FIdomFX=FX
4 f1oi IdomFX:domFX1-1 ontodomFX
5 f1of1 IdomFX:domFX1-1 ontodomFXIdomFX:domFX1-1domFX
6 4 5 ax-mp IdomFX:domFX1-1domFX
7 resss FXF
8 dmss FXFdomFXdomF
9 7 8 ax-mp domFXdomF
10 f1ss IdomFX:domFX1-1domFXdomFXdomFIdomFX:domFX1-1domF
11 6 9 10 mp2an IdomFX:domFX1-1domF
12 f1lindf WLModFLIndFWIdomFX:domFX1-1domFFIdomFXLIndFW
13 11 12 mp3an3 WLModFLIndFWFIdomFXLIndFW
14 3 13 eqbrtrrid WLModFLIndFWFXLIndFW