Metamath Proof Explorer


Theorem linepmap

Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012)

Ref Expression
Hypotheses isline2.j ˙=joinK
isline2.a A=AtomsK
isline2.n N=LinesK
isline2.m M=pmapK
Assertion linepmap KLatPAQAPQMP˙QN

Proof

Step Hyp Ref Expression
1 isline2.j ˙=joinK
2 isline2.a A=AtomsK
3 isline2.n N=LinesK
4 isline2.m M=pmapK
5 simpl1 KLatPAQAPQKLat
6 simpl2 KLatPAQAPQPA
7 eqid BaseK=BaseK
8 7 2 atbase PAPBaseK
9 6 8 syl KLatPAQAPQPBaseK
10 simpl3 KLatPAQAPQQA
11 7 2 atbase QAQBaseK
12 10 11 syl KLatPAQAPQQBaseK
13 7 1 latjcl KLatPBaseKQBaseKP˙QBaseK
14 5 9 12 13 syl3anc KLatPAQAPQP˙QBaseK
15 eqid K=K
16 7 15 2 4 pmapval KLatP˙QBaseKMP˙Q=rA|rKP˙Q
17 5 14 16 syl2anc KLatPAQAPQMP˙Q=rA|rKP˙Q
18 eqid rA|rKP˙Q=rA|rKP˙Q
19 15 1 2 3 islinei KLatPAQAPQrA|rKP˙Q=rA|rKP˙QrA|rKP˙QN
20 18 19 mpanr2 KLatPAQAPQrA|rKP˙QN
21 17 20 eqeltrd KLatPAQAPQMP˙QN