Metamath Proof Explorer


Theorem lineq

Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses lineq.a φA
lineq.b φB
lineq.x φX
lineq.y φY
lineq.n0 φA0
Assertion lineq φAX+B=YX=YBA

Proof

Step Hyp Ref Expression
1 lineq.a φA
2 lineq.b φB
3 lineq.x φX
4 lineq.y φY
5 lineq.n0 φA0
6 1 3 mulcld φAX
7 6 2 4 addlsub φAX+B=YAX=YB
8 4 2 subcld φYB
9 1 3 8 5 rdiv φAX=YBX=YBA
10 7 9 bitrd φAX+B=YX=YBA