Metamath Proof Explorer


Theorem linindscl

Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019)

Ref Expression
Assertion linindscl SlinIndSMS𝒫BaseM

Proof

Step Hyp Ref Expression
1 eqid BaseM=BaseM
2 eqid 0M=0M
3 eqid ScalarM=ScalarM
4 eqid BaseScalarM=BaseScalarM
5 eqid 0ScalarM=0ScalarM
6 1 2 3 4 5 linindsi SlinIndSMS𝒫BaseMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx=0ScalarM
7 6 simpld SlinIndSMS𝒫BaseM