Metamath Proof Explorer


Theorem lkrssv

Description: The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lkrssv.v V=BaseW
lkrssv.f F=LFnlW
lkrssv.k K=LKerW
lkrssv.w φWLMod
lkrssv.g φGF
Assertion lkrssv φKGV

Proof

Step Hyp Ref Expression
1 lkrssv.v V=BaseW
2 lkrssv.f F=LFnlW
3 lkrssv.k K=LKerW
4 lkrssv.w φWLMod
5 lkrssv.g φGF
6 eqid LSubSpW=LSubSpW
7 2 3 6 lkrlss WLModGFKGLSubSpW
8 4 5 7 syl2anc φKGLSubSpW
9 1 6 lssss KGLSubSpWKGV
10 8 9 syl φKGV