Metamath Proof Explorer


Theorem llnexch2N

Description: Line exchange property (compare cvlatexch2 for atoms). (Contributed by NM, 18-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses llnexch.l ˙=K
llnexch.j ˙=joinK
llnexch.m ˙=meetK
llnexch.a A=AtomsK
llnexch.n N=LLinesK
Assertion llnexch2N KHLXNYNZNX˙YAXZX˙Y˙ZX˙Z˙Y

Proof

Step Hyp Ref Expression
1 llnexch.l ˙=K
2 llnexch.j ˙=joinK
3 llnexch.m ˙=meetK
4 llnexch.a A=AtomsK
5 llnexch.n N=LLinesK
6 1 2 3 4 5 llnexchb2 KHLXNYNZNX˙YAXZX˙Y˙ZX˙Y=X˙Z
7 hllat KHLKLat
8 7 3ad2ant1 KHLXNYNZNX˙YAXZKLat
9 simp21 KHLXNYNZNX˙YAXZXN
10 eqid BaseK=BaseK
11 10 5 llnbase XNXBaseK
12 9 11 syl KHLXNYNZNX˙YAXZXBaseK
13 simp22 KHLXNYNZNX˙YAXZYN
14 10 5 llnbase YNYBaseK
15 13 14 syl KHLXNYNZNX˙YAXZYBaseK
16 10 1 3 latmle2 KLatXBaseKYBaseKX˙Y˙Y
17 8 12 15 16 syl3anc KHLXNYNZNX˙YAXZX˙Y˙Y
18 breq1 X˙Y=X˙ZX˙Y˙YX˙Z˙Y
19 17 18 syl5ibcom KHLXNYNZNX˙YAXZX˙Y=X˙ZX˙Z˙Y
20 6 19 sylbid KHLXNYNZNX˙YAXZX˙Y˙ZX˙Z˙Y