| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llnexch.l |
|
| 2 |
|
llnexch.j |
|
| 3 |
|
llnexch.m |
|
| 4 |
|
llnexch.a |
|
| 5 |
|
llnexch.n |
|
| 6 |
|
simp23 |
|
| 7 |
|
simp1 |
|
| 8 |
|
eqid |
|
| 9 |
8 5
|
llnbase |
|
| 10 |
6 9
|
syl |
|
| 11 |
8 2 4 5
|
islln3 |
|
| 12 |
7 10 11
|
syl2anc |
|
| 13 |
6 12
|
mpbid |
|
| 14 |
|
simp3r |
|
| 15 |
14
|
necomd |
|
| 16 |
|
simp11 |
|
| 17 |
16
|
hllatd |
|
| 18 |
|
simp2l |
|
| 19 |
8 4
|
atbase |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
simp2r |
|
| 22 |
8 4
|
atbase |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
simp121 |
|
| 25 |
8 5
|
llnbase |
|
| 26 |
24 25
|
syl |
|
| 27 |
8 1 2
|
latjle12 |
|
| 28 |
17 20 23 26 27
|
syl13anc |
|
| 29 |
|
simp3 |
|
| 30 |
2 4 5
|
llni2 |
|
| 31 |
16 18 21 29 30
|
syl31anc |
|
| 32 |
1 5
|
llncmp |
|
| 33 |
16 31 24 32
|
syl3anc |
|
| 34 |
28 33
|
bitr2d |
|
| 35 |
34
|
necon3abid |
|
| 36 |
|
ianor |
|
| 37 |
35 36
|
bitrdi |
|
| 38 |
|
simpl11 |
|
| 39 |
24
|
adantr |
|
| 40 |
|
simp122 |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simpl2l |
|
| 43 |
|
simpl2r |
|
| 44 |
|
simpr |
|
| 45 |
|
simp13l |
|
| 46 |
45
|
adantr |
|
| 47 |
1 2 3 4 5
|
llnexchb2lem |
|
| 48 |
38 39 41 42 43 44 46 47
|
syl331anc |
|
| 49 |
48
|
ex |
|
| 50 |
|
simpl11 |
|
| 51 |
24
|
adantr |
|
| 52 |
40
|
adantr |
|
| 53 |
|
simpl2r |
|
| 54 |
|
simpl2l |
|
| 55 |
|
simpr |
|
| 56 |
45
|
adantr |
|
| 57 |
1 2 3 4 5
|
llnexchb2lem |
|
| 58 |
50 51 52 53 54 55 56 57
|
syl331anc |
|
| 59 |
2 4
|
hlatjcom |
|
| 60 |
50 54 53 59
|
syl3anc |
|
| 61 |
60
|
breq2d |
|
| 62 |
60
|
oveq2d |
|
| 63 |
62
|
eqeq2d |
|
| 64 |
58 61 63
|
3bitr4d |
|
| 65 |
64
|
ex |
|
| 66 |
49 65
|
jaod |
|
| 67 |
37 66
|
sylbid |
|
| 68 |
|
neeq1 |
|
| 69 |
|
breq2 |
|
| 70 |
|
oveq2 |
|
| 71 |
70
|
eqeq2d |
|
| 72 |
69 71
|
bibi12d |
|
| 73 |
68 72
|
imbi12d |
|
| 74 |
67 73
|
syl5ibrcom |
|
| 75 |
74
|
3exp |
|
| 76 |
75
|
imp4a |
|
| 77 |
76
|
rexlimdvv |
|
| 78 |
13 15 77
|
mp2d |
|