Metamath Proof Explorer


Theorem llnle

Description: Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012)

Ref Expression
Hypotheses llnle.b B=BaseK
llnle.l ˙=K
llnle.z 0˙=0.K
llnle.a A=AtomsK
llnle.n N=LLinesK
Assertion llnle KHLXBX0˙¬XAyNy˙X

Proof

Step Hyp Ref Expression
1 llnle.b B=BaseK
2 llnle.l ˙=K
3 llnle.z 0˙=0.K
4 llnle.a A=AtomsK
5 llnle.n N=LLinesK
6 simpll KHLXBX0˙¬XAKHL
7 simplr KHLXBX0˙¬XAXB
8 simprl KHLXBX0˙¬XAX0˙
9 1 2 3 4 atle KHLXBX0˙pAp˙X
10 6 7 8 9 syl3anc KHLXBX0˙¬XApAp˙X
11 simp1ll KHLXBX0˙¬XApAp˙XKHL
12 1 4 atbase pApB
13 12 3ad2ant2 KHLXBX0˙¬XApAp˙XpB
14 simp1lr KHLXBX0˙¬XApAp˙XXB
15 simp3 KHLXBX0˙¬XApAp˙Xp˙X
16 simp2 KHLXBX0˙¬XApAp˙XpA
17 simp1rr KHLXBX0˙¬XApAp˙X¬XA
18 nelne2 pA¬XApX
19 16 17 18 syl2anc KHLXBX0˙¬XApAp˙XpX
20 eqid <K=<K
21 2 20 pltval KHLpAXBp<KXp˙XpX
22 11 16 14 21 syl3anc KHLXBX0˙¬XApAp˙Xp<KXp˙XpX
23 15 19 22 mpbir2and KHLXBX0˙¬XApAp˙Xp<KX
24 eqid joinK=joinK
25 eqid K=K
26 1 2 20 24 25 4 hlrelat3 KHLpBXBp<KXqApKpjoinKqpjoinKq˙X
27 11 13 14 23 26 syl31anc KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙X
28 simp1ll KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XKHL
29 simp21 KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XpA
30 simp23 KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XqA
31 1 24 4 hlatjcl KHLpAqApjoinKqB
32 28 29 30 31 syl3anc KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XpjoinKqB
33 simp3l KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XpKpjoinKq
34 1 25 4 5 llni KHLpjoinKqBpApKpjoinKqpjoinKqN
35 28 32 29 33 34 syl31anc KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XpjoinKqN
36 simp3r KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XpjoinKq˙X
37 breq1 y=pjoinKqy˙XpjoinKq˙X
38 37 rspcev pjoinKqNpjoinKq˙XyNy˙X
39 35 36 38 syl2anc KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XyNy˙X
40 39 3exp KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XyNy˙X
41 40 3expd KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XyNy˙X
42 41 3imp KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XyNy˙X
43 42 rexlimdv KHLXBX0˙¬XApAp˙XqApKpjoinKqpjoinKq˙XyNy˙X
44 27 43 mpd KHLXBX0˙¬XApAp˙XyNy˙X
45 44 3exp KHLXBX0˙¬XApAp˙XyNy˙X
46 45 rexlimdv KHLXBX0˙¬XApAp˙XyNy˙X
47 10 46 mpd KHLXBX0˙¬XAyNy˙X