Metamath Proof Explorer


Theorem llnmod1i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion llnmod1i2 KHLXBYBPAQAX˙YX˙P˙Q˙Y=X˙P˙Q˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 simpl1 KHLXBYBPAQAKHL
7 simpl2 KHLXBYBPAQAXB
8 simprl KHLXBYBPAQAPA
9 simprr KHLXBYBPAQAQA
10 eqid pmapK=pmapK
11 eqid +𝑃K=+𝑃K
12 1 3 5 10 11 pmapjlln1 KHLXBPAQApmapKX˙P˙Q=pmapKX+𝑃KpmapKP˙Q
13 6 7 8 9 12 syl13anc KHLXBYBPAQApmapKX˙P˙Q=pmapKX+𝑃KpmapKP˙Q
14 6 hllatd KHLXBYBPAQAKLat
15 1 5 atbase PAPB
16 8 15 syl KHLXBYBPAQAPB
17 1 5 atbase QAQB
18 9 17 syl KHLXBYBPAQAQB
19 1 3 latjcl KLatPBQBP˙QB
20 14 16 18 19 syl3anc KHLXBYBPAQAP˙QB
21 simpl3 KHLXBYBPAQAYB
22 1 2 3 4 10 11 hlmod1i KHLXBP˙QBYBX˙YpmapKX˙P˙Q=pmapKX+𝑃KpmapKP˙QX˙P˙Q˙Y=X˙P˙Q˙Y
23 6 7 20 21 22 syl13anc KHLXBYBPAQAX˙YpmapKX˙P˙Q=pmapKX+𝑃KpmapKP˙QX˙P˙Q˙Y=X˙P˙Q˙Y
24 13 23 mpan2d KHLXBYBPAQAX˙YX˙P˙Q˙Y=X˙P˙Q˙Y
25 24 3impia KHLXBYBPAQAX˙YX˙P˙Q˙Y=X˙P˙Q˙Y
26 25 eqcomd KHLXBYBPAQAX˙YX˙P˙Q˙Y=X˙P˙Q˙Y