Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atmod.b | |
|
atmod.l | |
||
atmod.j | |
||
atmod.m | |
||
atmod.a | |
||
Assertion | llnmod1i2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atmod.b | |
|
2 | atmod.l | |
|
3 | atmod.j | |
|
4 | atmod.m | |
|
5 | atmod.a | |
|
6 | simpl1 | |
|
7 | simpl2 | |
|
8 | simprl | |
|
9 | simprr | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 3 5 10 11 | pmapjlln1 | |
13 | 6 7 8 9 12 | syl13anc | |
14 | 6 | hllatd | |
15 | 1 5 | atbase | |
16 | 8 15 | syl | |
17 | 1 5 | atbase | |
18 | 9 17 | syl | |
19 | 1 3 | latjcl | |
20 | 14 16 18 19 | syl3anc | |
21 | simpl3 | |
|
22 | 1 2 3 4 10 11 | hlmod1i | |
23 | 6 7 20 21 22 | syl13anc | |
24 | 13 23 | mpan2d | |
25 | 24 | 3impia | |
26 | 25 | eqcomd | |