Metamath Proof Explorer


Theorem lmhmkerlss

Description: The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmkerlss.k K=F-10˙
lmhmkerlss.z 0˙=0T
lmhmkerlss.u U=LSubSpS
Assertion lmhmkerlss FSLMHomTKU

Proof

Step Hyp Ref Expression
1 lmhmkerlss.k K=F-10˙
2 lmhmkerlss.z 0˙=0T
3 lmhmkerlss.u U=LSubSpS
4 lmhmlmod2 FSLMHomTTLMod
5 eqid LSubSpT=LSubSpT
6 2 5 lsssn0 TLMod0˙LSubSpT
7 4 6 syl FSLMHomT0˙LSubSpT
8 3 5 lmhmpreima FSLMHomT0˙LSubSpTF-10˙U
9 7 8 mpdan FSLMHomTF-10˙U
10 1 9 eqeltrid FSLMHomTKU