Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reslmhm.u | |
|
reslmhm.r | |
||
Assertion | reslmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reslmhm.u | |
|
2 | reslmhm.r | |
|
3 | lmhmlmod1 | |
|
4 | 2 1 | lsslmod | |
5 | 3 4 | sylan | |
6 | lmhmlmod2 | |
|
7 | 6 | adantr | |
8 | lmghm | |
|
9 | 1 | lsssubg | |
10 | 3 9 | sylan | |
11 | 2 | resghm | |
12 | 8 10 11 | syl2an2r | |
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | lmhmsca | |
16 | 2 13 | resssca | |
17 | 15 16 | sylan9eq | |
18 | simpll | |
|
19 | simprl | |
|
20 | eqid | |
|
21 | 20 1 | lssss | |
22 | 21 | adantl | |
23 | 22 | adantr | |
24 | 2 20 | ressbas2 | |
25 | 22 24 | syl | |
26 | 25 | eleq2d | |
27 | 26 | biimpar | |
28 | 27 | adantrl | |
29 | 23 28 | sseldd | |
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | 13 30 20 31 32 | lmhmlin | |
34 | 18 19 29 33 | syl3anc | |
35 | 3 | adantr | |
36 | 35 | adantr | |
37 | simplr | |
|
38 | 13 31 30 1 | lssvscl | |
39 | 36 37 19 28 38 | syl22anc | |
40 | 39 | fvresd | |
41 | fvres | |
|
42 | 41 | oveq2d | |
43 | 28 42 | syl | |
44 | 34 40 43 | 3eqtr4d | |
45 | 44 | ralrimivva | |
46 | 16 | adantl | |
47 | 46 | fveq2d | |
48 | 2 31 | ressvsca | |
49 | 48 | adantl | |
50 | 49 | oveqd | |
51 | 50 | fveqeq2d | |
52 | 51 | ralbidv | |
53 | 47 52 | raleqbidv | |
54 | 45 53 | mpbid | |
55 | 12 17 54 | 3jca | |
56 | eqid | |
|
57 | eqid | |
|
58 | eqid | |
|
59 | eqid | |
|
60 | 56 14 57 58 59 32 | islmhm | |
61 | 5 7 55 60 | syl21anbrc | |