Metamath Proof Explorer


Theorem reslmhm

Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses reslmhm.u U=LSubSpS
reslmhm.r R=S𝑠X
Assertion reslmhm FSLMHomTXUFXRLMHomT

Proof

Step Hyp Ref Expression
1 reslmhm.u U=LSubSpS
2 reslmhm.r R=S𝑠X
3 lmhmlmod1 FSLMHomTSLMod
4 2 1 lsslmod SLModXURLMod
5 3 4 sylan FSLMHomTXURLMod
6 lmhmlmod2 FSLMHomTTLMod
7 6 adantr FSLMHomTXUTLMod
8 lmghm FSLMHomTFSGrpHomT
9 1 lsssubg SLModXUXSubGrpS
10 3 9 sylan FSLMHomTXUXSubGrpS
11 2 resghm FSGrpHomTXSubGrpSFXRGrpHomT
12 8 10 11 syl2an2r FSLMHomTXUFXRGrpHomT
13 eqid ScalarS=ScalarS
14 eqid ScalarT=ScalarT
15 13 14 lmhmsca FSLMHomTScalarT=ScalarS
16 2 13 resssca XUScalarS=ScalarR
17 15 16 sylan9eq FSLMHomTXUScalarT=ScalarR
18 simpll FSLMHomTXUaBaseScalarSbBaseRFSLMHomT
19 simprl FSLMHomTXUaBaseScalarSbBaseRaBaseScalarS
20 eqid BaseS=BaseS
21 20 1 lssss XUXBaseS
22 21 adantl FSLMHomTXUXBaseS
23 22 adantr FSLMHomTXUaBaseScalarSbBaseRXBaseS
24 2 20 ressbas2 XBaseSX=BaseR
25 22 24 syl FSLMHomTXUX=BaseR
26 25 eleq2d FSLMHomTXUbXbBaseR
27 26 biimpar FSLMHomTXUbBaseRbX
28 27 adantrl FSLMHomTXUaBaseScalarSbBaseRbX
29 23 28 sseldd FSLMHomTXUaBaseScalarSbBaseRbBaseS
30 eqid BaseScalarS=BaseScalarS
31 eqid S=S
32 eqid T=T
33 13 30 20 31 32 lmhmlin FSLMHomTaBaseScalarSbBaseSFaSb=aTFb
34 18 19 29 33 syl3anc FSLMHomTXUaBaseScalarSbBaseRFaSb=aTFb
35 3 adantr FSLMHomTXUSLMod
36 35 adantr FSLMHomTXUaBaseScalarSbBaseRSLMod
37 simplr FSLMHomTXUaBaseScalarSbBaseRXU
38 13 31 30 1 lssvscl SLModXUaBaseScalarSbXaSbX
39 36 37 19 28 38 syl22anc FSLMHomTXUaBaseScalarSbBaseRaSbX
40 39 fvresd FSLMHomTXUaBaseScalarSbBaseRFXaSb=FaSb
41 fvres bXFXb=Fb
42 41 oveq2d bXaTFXb=aTFb
43 28 42 syl FSLMHomTXUaBaseScalarSbBaseRaTFXb=aTFb
44 34 40 43 3eqtr4d FSLMHomTXUaBaseScalarSbBaseRFXaSb=aTFXb
45 44 ralrimivva FSLMHomTXUaBaseScalarSbBaseRFXaSb=aTFXb
46 16 adantl FSLMHomTXUScalarS=ScalarR
47 46 fveq2d FSLMHomTXUBaseScalarS=BaseScalarR
48 2 31 ressvsca XUS=R
49 48 adantl FSLMHomTXUS=R
50 49 oveqd FSLMHomTXUaSb=aRb
51 50 fveqeq2d FSLMHomTXUFXaSb=aTFXbFXaRb=aTFXb
52 51 ralbidv FSLMHomTXUbBaseRFXaSb=aTFXbbBaseRFXaRb=aTFXb
53 47 52 raleqbidv FSLMHomTXUaBaseScalarSbBaseRFXaSb=aTFXbaBaseScalarRbBaseRFXaRb=aTFXb
54 45 53 mpbid FSLMHomTXUaBaseScalarRbBaseRFXaRb=aTFXb
55 12 17 54 3jca FSLMHomTXUFXRGrpHomTScalarT=ScalarRaBaseScalarRbBaseRFXaRb=aTFXb
56 eqid ScalarR=ScalarR
57 eqid BaseScalarR=BaseScalarR
58 eqid BaseR=BaseR
59 eqid R=R
60 56 14 57 58 59 32 islmhm FXRLMHomTRLModTLModFXRGrpHomTScalarT=ScalarRaBaseScalarRbBaseRFXaRb=aTFXb
61 5 7 55 60 syl21anbrc FSLMHomTXUFXRLMHomT