Description: The line mirroring function M is a bijection. Theorem 10.9 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |
|
ismid.d | |
||
ismid.i | |
||
ismid.g | |
||
ismid.1 | |
||
lmif.m | |
||
lmif.l | |
||
lmif.d | |
||
Assertion | lmif1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |
|
2 | ismid.d | |
|
3 | ismid.i | |
|
4 | ismid.g | |
|
5 | ismid.1 | |
|
6 | lmif.m | |
|
7 | lmif.l | |
|
8 | lmif.d | |
|
9 | 1 2 3 4 5 6 7 8 | lmif | |
10 | 9 | ffnd | |
11 | 4 | adantr | |
12 | 5 | adantr | |
13 | 8 | adantr | |
14 | simpr | |
|
15 | 1 2 3 11 12 6 7 13 14 | lmilmi | |
16 | 15 | ralrimiva | |
17 | nvocnv | |
|
18 | 9 16 17 | syl2anc | |
19 | nvof1o | |
|
20 | 10 18 19 | syl2anc | |