Metamath Proof Explorer


Theorem lmif1o

Description: The line mirroring function M is a bijection. Theorem 10.9 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
Assertion lmif1o φM:P1-1 ontoP

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 1 2 3 4 5 6 7 8 lmif φM:PP
10 9 ffnd φMFnP
11 4 adantr φbPG𝒢Tarski
12 5 adantr φbPGDim𝒢2
13 8 adantr φbPDranL
14 simpr φbPbP
15 1 2 3 11 12 6 7 13 14 lmilmi φbPMMb=b
16 15 ralrimiva φbPMMb=b
17 nvocnv M:PPbPMMb=bM-1=M
18 9 16 17 syl2anc φM-1=M
19 nvof1o MFnPM-1=MM:P1-1 ontoP
20 10 18 19 syl2anc φM:P1-1 ontoP