Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lmimcnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | lmhmf | |
4 | frel | |
|
5 | 3 4 | syl | |
6 | dfrel2 | |
|
7 | 5 6 | sylib | |
8 | id | |
|
9 | 7 8 | eqeltrd | |
10 | 9 | anim1ci | |
11 | islmim2 | |
|
12 | islmim2 | |
|
13 | 10 11 12 | 3imtr4i | |