Metamath Proof Explorer


Theorem lmimcnv

Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmimcnv FSLMIsoTF-1TLMIsoS

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 lmhmf FSLMHomTF:BaseSBaseT
4 frel F:BaseSBaseTRelF
5 3 4 syl FSLMHomTRelF
6 dfrel2 RelFF-1-1=F
7 5 6 sylib FSLMHomTF-1-1=F
8 id FSLMHomTFSLMHomT
9 7 8 eqeltrd FSLMHomTF-1-1SLMHomT
10 9 anim1ci FSLMHomTF-1TLMHomSF-1TLMHomSF-1-1SLMHomT
11 islmim2 FSLMIsoTFSLMHomTF-1TLMHomS
12 islmim2 F-1TLMIsoSF-1TLMHomSF-1-1SLMHomT
13 10 11 12 3imtr4i FSLMIsoTF-1TLMIsoS