Metamath Proof Explorer


Theorem lmimf1o

Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses islmim.b B=BaseR
islmim.c C=BaseS
Assertion lmimf1o FRLMIsoSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 islmim.b B=BaseR
2 islmim.c C=BaseS
3 1 2 islmim FRLMIsoSFRLMHomSF:B1-1 ontoC
4 3 simprbi FRLMIsoSF:B1-1 ontoC