Description: Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on CC on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmlim.j | |
|
lmlim.f | |
||
lmlim.p | |
||
lmlim.t | |
||
lmlim.x | |
||
Assertion | lmlim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmlim.j | |
|
2 | lmlim.f | |
|
3 | lmlim.p | |
|
4 | lmlim.t | |
|
5 | lmlim.x | |
|
6 | eqid | |
|
7 | nnuz | |
|
8 | cnex | |
|
9 | 8 | a1i | |
10 | 5 | a1i | |
11 | 9 10 | ssexd | |
12 | 1 | topontopi | |
13 | 12 | a1i | |
14 | 1z | |
|
15 | 14 | a1i | |
16 | 6 7 11 13 3 15 2 | lmss | |
17 | 4 | fveq2i | |
18 | 17 | breqi | |
19 | 18 | a1i | |
20 | eqid | |
|
21 | eqid | |
|
22 | 21 | cnfldtop | |
23 | 22 | a1i | |
24 | 20 7 11 23 3 15 2 | lmss | |
25 | fss | |
|
26 | 2 5 25 | sylancl | |
27 | 21 7 | lmclimf | |
28 | 14 26 27 | sylancr | |
29 | 24 28 | bitr3d | |
30 | 16 19 29 | 3bitrd | |