Metamath Proof Explorer


Theorem lmlim

Description: Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on CC on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017)

Ref Expression
Hypotheses lmlim.j JTopOnY
lmlim.f φF:X
lmlim.p φPX
lmlim.t J𝑡X=TopOpenfld𝑡X
lmlim.x X
Assertion lmlim φFtJPFP

Proof

Step Hyp Ref Expression
1 lmlim.j JTopOnY
2 lmlim.f φF:X
3 lmlim.p φPX
4 lmlim.t J𝑡X=TopOpenfld𝑡X
5 lmlim.x X
6 eqid J𝑡X=J𝑡X
7 nnuz =1
8 cnex V
9 8 a1i φV
10 5 a1i φX
11 9 10 ssexd φXV
12 1 topontopi JTop
13 12 a1i φJTop
14 1z 1
15 14 a1i φ1
16 6 7 11 13 3 15 2 lmss φFtJPFtJ𝑡XP
17 4 fveq2i tJ𝑡X=tTopOpenfld𝑡X
18 17 breqi FtJ𝑡XPFtTopOpenfld𝑡XP
19 18 a1i φFtJ𝑡XPFtTopOpenfld𝑡XP
20 eqid TopOpenfld𝑡X=TopOpenfld𝑡X
21 eqid TopOpenfld=TopOpenfld
22 21 cnfldtop TopOpenfldTop
23 22 a1i φTopOpenfldTop
24 20 7 11 23 3 15 2 lmss φFtTopOpenfldPFtTopOpenfld𝑡XP
25 fss F:XXF:
26 2 5 25 sylancl φF:
27 21 7 lmclimf 1F:FtTopOpenfldPFP
28 14 26 27 sylancr φFtTopOpenfldPFP
29 24 28 bitr3d φFtTopOpenfld𝑡XPFP
30 16 19 29 3bitrd φFtJPFP