Metamath Proof Explorer
		
		
		
		Description:  The zero vector is a vector.  ( ax-hv0cl analog.)  (Contributed by NM, 10-Jan-2014)  (Revised by Mario Carneiro, 19-Jun-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 0vcl.v |  | 
					
						|  |  | 0vcl.z |  | 
				
					|  | Assertion | lmod0vcl |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0vcl.v |  | 
						
							| 2 |  | 0vcl.z |  | 
						
							| 3 |  | lmodgrp |  | 
						
							| 4 | 1 2 | grpidcl |  | 
						
							| 5 | 3 4 | syl |  |