Metamath Proof Explorer


Theorem lmodvsubcl

Description: Closure of vector subtraction. ( hvsubcl analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvsubcl.v V=BaseW
lmodvsubcl.m -˙=-W
Assertion lmodvsubcl WLModXVYVX-˙YV

Proof

Step Hyp Ref Expression
1 lmodvsubcl.v V=BaseW
2 lmodvsubcl.m -˙=-W
3 lmodgrp WLModWGrp
4 1 2 grpsubcl WGrpXVYVX-˙YV
5 3 4 syl3an1 WLModXVYVX-˙YV