Metamath Proof Explorer


Theorem lncom

Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses btwnlng1.p P=BaseG
btwnlng1.i I=ItvG
btwnlng1.l L=Line𝒢G
btwnlng1.g φG𝒢Tarski
btwnlng1.x φXP
btwnlng1.y φYP
btwnlng1.z φZP
btwnlng1.d φXY
lncom.1 φZYLX
Assertion lncom φZXLY

Proof

Step Hyp Ref Expression
1 btwnlng1.p P=BaseG
2 btwnlng1.i I=ItvG
3 btwnlng1.l L=Line𝒢G
4 btwnlng1.g φG𝒢Tarski
5 btwnlng1.x φXP
6 btwnlng1.y φYP
7 btwnlng1.z φZP
8 btwnlng1.d φXY
9 lncom.1 φZYLX
10 3orcomb ZXIYXZIYYXIZZXIYYXIZXZIY
11 eqid distG=distG
12 1 11 2 4 5 7 6 tgbtwncomb φZXIYZYIX
13 1 11 2 4 5 6 7 tgbtwncomb φYXIZYZIX
14 1 11 2 4 7 5 6 tgbtwncomb φXZIYXYIZ
15 12 13 14 3orbi123d φZXIYYXIZXZIYZYIXYZIXXYIZ
16 10 15 bitrid φZXIYXZIYYXIZZYIXYZIXXYIZ
17 1 3 2 4 5 6 8 7 tgellng φZXLYZXIYXZIYYXIZ
18 8 necomd φYX
19 1 3 2 4 6 5 18 7 tgellng φZYLXZYIXYZIXXYIZ
20 16 17 19 3bitr4d φZXLYZYLX
21 9 20 mpbird φZXLY