| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p |  | 
						
							| 2 |  | tglngval.l |  | 
						
							| 3 |  | tglngval.i |  | 
						
							| 4 |  | tglngval.g |  | 
						
							| 5 |  | tglngval.x |  | 
						
							| 6 |  | tglngval.y |  | 
						
							| 7 |  | tgcolg.z |  | 
						
							| 8 |  | lnxfr.r |  | 
						
							| 9 |  | lnxfr.a |  | 
						
							| 10 |  | lnxfr.b |  | 
						
							| 11 |  | lnxfr.d |  | 
						
							| 12 |  | lnext.1 |  | 
						
							| 13 |  | lnext.2 |  | 
						
							| 14 | 1 11 3 4 9 10 6 7 | axtgsegcon |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 4 | ad3antrrr |  | 
						
							| 17 | 5 | ad3antrrr |  | 
						
							| 18 | 6 | ad3antrrr |  | 
						
							| 19 | 7 | ad3antrrr |  | 
						
							| 20 | 9 | ad3antrrr |  | 
						
							| 21 | 10 | ad3antrrr |  | 
						
							| 22 |  | simplr |  | 
						
							| 23 | 13 | ad3antrrr |  | 
						
							| 24 |  | simprr |  | 
						
							| 25 | 24 | eqcomd |  | 
						
							| 26 |  | simpllr |  | 
						
							| 27 |  | simprl |  | 
						
							| 28 | 1 11 3 16 17 18 19 20 21 22 26 27 23 25 | tgcgrextend |  | 
						
							| 29 | 1 11 3 16 17 19 20 22 28 | tgcgrcomlr |  | 
						
							| 30 | 1 11 8 16 17 18 19 20 21 22 23 25 29 | trgcgr |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 31 | reximdva |  | 
						
							| 33 | 15 32 | mpd |  | 
						
							| 34 | 1 11 3 4 10 9 5 7 | axtgsegcon |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 4 | ad3antrrr |  | 
						
							| 37 | 5 | ad3antrrr |  | 
						
							| 38 | 6 | ad3antrrr |  | 
						
							| 39 | 7 | ad3antrrr |  | 
						
							| 40 | 9 | ad3antrrr |  | 
						
							| 41 | 10 | ad3antrrr |  | 
						
							| 42 |  | simplr |  | 
						
							| 43 | 13 | ad3antrrr |  | 
						
							| 44 |  | simpllr |  | 
						
							| 45 |  | simprl |  | 
						
							| 46 | 1 11 3 36 37 38 40 41 43 | tgcgrcomlr |  | 
						
							| 47 |  | simprr |  | 
						
							| 48 | 47 | eqcomd |  | 
						
							| 49 | 1 11 3 36 38 37 39 41 40 42 44 45 46 48 | tgcgrextend |  | 
						
							| 50 | 1 11 3 36 37 39 40 42 48 | tgcgrcomlr |  | 
						
							| 51 | 1 11 8 36 37 38 39 40 41 42 43 49 50 | trgcgr |  | 
						
							| 52 | 51 | ex |  | 
						
							| 53 | 52 | reximdva |  | 
						
							| 54 | 35 53 | mpd |  | 
						
							| 55 | 4 | adantr |  | 
						
							| 56 | 5 | adantr |  | 
						
							| 57 | 7 | adantr |  | 
						
							| 58 | 6 | adantr |  | 
						
							| 59 | 9 | adantr |  | 
						
							| 60 | 10 | adantr |  | 
						
							| 61 |  | simpr |  | 
						
							| 62 | 13 | adantr |  | 
						
							| 63 | 1 11 3 8 55 56 57 58 59 60 61 62 | tgcgrxfr |  | 
						
							| 64 | 4 | ad3antrrr |  | 
						
							| 65 | 5 | ad3antrrr |  | 
						
							| 66 | 7 | ad3antrrr |  | 
						
							| 67 | 6 | ad3antrrr |  | 
						
							| 68 | 9 | ad3antrrr |  | 
						
							| 69 |  | simplr |  | 
						
							| 70 | 10 | ad3antrrr |  | 
						
							| 71 |  | simprr |  | 
						
							| 72 | 1 11 3 8 64 65 66 67 68 69 70 71 | cgr3swap23 |  | 
						
							| 73 | 72 | ex |  | 
						
							| 74 | 73 | reximdva |  | 
						
							| 75 | 63 74 | mpd |  | 
						
							| 76 | 1 2 3 4 5 7 6 | tgcolg |  | 
						
							| 77 | 12 76 | mpbid |  | 
						
							| 78 | 33 54 75 77 | mpjao3dan |  |