Metamath Proof Explorer


Theorem lnext

Description: Extend a line with a missing point. Theorem 4.14 of Schwabhauser p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
lnxfr.r ˙=𝒢G
lnxfr.a φAP
lnxfr.b φBP
lnxfr.d -˙=distG
lnext.1 φYXLZX=Z
lnext.2 φX-˙Y=A-˙B
Assertion lnext φcP⟨“XYZ”⟩˙⟨“ABc”⟩

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 lnxfr.r ˙=𝒢G
9 lnxfr.a φAP
10 lnxfr.b φBP
11 lnxfr.d -˙=distG
12 lnext.1 φYXLZX=Z
13 lnext.2 φX-˙Y=A-˙B
14 1 11 3 4 9 10 6 7 axtgsegcon φcPBAIcB-˙c=Y-˙Z
15 14 adantr φYXIZcPBAIcB-˙c=Y-˙Z
16 4 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZG𝒢Tarski
17 5 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZXP
18 6 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZYP
19 7 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZZP
20 9 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZAP
21 10 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZBP
22 simplr φYXIZcPBAIcB-˙c=Y-˙ZcP
23 13 ad3antrrr φYXIZcPBAIcB-˙c=Y-˙ZX-˙Y=A-˙B
24 simprr φYXIZcPBAIcB-˙c=Y-˙ZB-˙c=Y-˙Z
25 24 eqcomd φYXIZcPBAIcB-˙c=Y-˙ZY-˙Z=B-˙c
26 simpllr φYXIZcPBAIcB-˙c=Y-˙ZYXIZ
27 simprl φYXIZcPBAIcB-˙c=Y-˙ZBAIc
28 1 11 3 16 17 18 19 20 21 22 26 27 23 25 tgcgrextend φYXIZcPBAIcB-˙c=Y-˙ZX-˙Z=A-˙c
29 1 11 3 16 17 19 20 22 28 tgcgrcomlr φYXIZcPBAIcB-˙c=Y-˙ZZ-˙X=c-˙A
30 1 11 8 16 17 18 19 20 21 22 23 25 29 trgcgr φYXIZcPBAIcB-˙c=Y-˙Z⟨“XYZ”⟩˙⟨“ABc”⟩
31 30 ex φYXIZcPBAIcB-˙c=Y-˙Z⟨“XYZ”⟩˙⟨“ABc”⟩
32 31 reximdva φYXIZcPBAIcB-˙c=Y-˙ZcP⟨“XYZ”⟩˙⟨“ABc”⟩
33 15 32 mpd φYXIZcP⟨“XYZ”⟩˙⟨“ABc”⟩
34 1 11 3 4 10 9 5 7 axtgsegcon φcPABIcA-˙c=X-˙Z
35 34 adantr φXYIZcPABIcA-˙c=X-˙Z
36 4 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZG𝒢Tarski
37 5 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZXP
38 6 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZYP
39 7 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZZP
40 9 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZAP
41 10 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZBP
42 simplr φXYIZcPABIcA-˙c=X-˙ZcP
43 13 ad3antrrr φXYIZcPABIcA-˙c=X-˙ZX-˙Y=A-˙B
44 simpllr φXYIZcPABIcA-˙c=X-˙ZXYIZ
45 simprl φXYIZcPABIcA-˙c=X-˙ZABIc
46 1 11 3 36 37 38 40 41 43 tgcgrcomlr φXYIZcPABIcA-˙c=X-˙ZY-˙X=B-˙A
47 simprr φXYIZcPABIcA-˙c=X-˙ZA-˙c=X-˙Z
48 47 eqcomd φXYIZcPABIcA-˙c=X-˙ZX-˙Z=A-˙c
49 1 11 3 36 38 37 39 41 40 42 44 45 46 48 tgcgrextend φXYIZcPABIcA-˙c=X-˙ZY-˙Z=B-˙c
50 1 11 3 36 37 39 40 42 48 tgcgrcomlr φXYIZcPABIcA-˙c=X-˙ZZ-˙X=c-˙A
51 1 11 8 36 37 38 39 40 41 42 43 49 50 trgcgr φXYIZcPABIcA-˙c=X-˙Z⟨“XYZ”⟩˙⟨“ABc”⟩
52 51 ex φXYIZcPABIcA-˙c=X-˙Z⟨“XYZ”⟩˙⟨“ABc”⟩
53 52 reximdva φXYIZcPABIcA-˙c=X-˙ZcP⟨“XYZ”⟩˙⟨“ABc”⟩
54 35 53 mpd φXYIZcP⟨“XYZ”⟩˙⟨“ABc”⟩
55 4 adantr φZXIYG𝒢Tarski
56 5 adantr φZXIYXP
57 7 adantr φZXIYZP
58 6 adantr φZXIYYP
59 9 adantr φZXIYAP
60 10 adantr φZXIYBP
61 simpr φZXIYZXIY
62 13 adantr φZXIYX-˙Y=A-˙B
63 1 11 3 8 55 56 57 58 59 60 61 62 tgcgrxfr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩
64 4 ad3antrrr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩G𝒢Tarski
65 5 ad3antrrr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩XP
66 7 ad3antrrr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩ZP
67 6 ad3antrrr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩YP
68 9 ad3antrrr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩AP
69 simplr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩cP
70 10 ad3antrrr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩BP
71 simprr φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩⟨“XZY”⟩˙⟨“AcB”⟩
72 1 11 3 8 64 65 66 67 68 69 70 71 cgr3swap23 φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩⟨“XYZ”⟩˙⟨“ABc”⟩
73 72 ex φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩⟨“XYZ”⟩˙⟨“ABc”⟩
74 73 reximdva φZXIYcPcAIB⟨“XZY”⟩˙⟨“AcB”⟩cP⟨“XYZ”⟩˙⟨“ABc”⟩
75 63 74 mpd φZXIYcP⟨“XYZ”⟩˙⟨“ABc”⟩
76 1 2 3 4 5 7 6 tgcolg φYXLZX=ZYXIZXYIZZXIY
77 12 76 mpbid φYXIZXYIZZXIY
78 33 54 75 77 mpjao3dan φcP⟨“XYZ”⟩˙⟨“ABc”⟩