Metamath Proof Explorer


Theorem tgcgrxfr

Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p P = Base G
tgcgrxfr.m - ˙ = dist G
tgcgrxfr.i I = Itv G
tgcgrxfr.r ˙ = 𝒢 G
tgcgrxfr.g φ G 𝒢 Tarski
tgcgrxfr.a φ A P
tgcgrxfr.b φ B P
tgcgrxfr.c φ C P
tgcgrxfr.d φ D P
tgcgrxfr.f φ F P
tgcgrxfr.1 φ B A I C
tgcgrxfr.2 φ A - ˙ C = D - ˙ F
Assertion tgcgrxfr φ e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p P = Base G
2 tgcgrxfr.m - ˙ = dist G
3 tgcgrxfr.i I = Itv G
4 tgcgrxfr.r ˙ = 𝒢 G
5 tgcgrxfr.g φ G 𝒢 Tarski
6 tgcgrxfr.a φ A P
7 tgcgrxfr.b φ B P
8 tgcgrxfr.c φ C P
9 tgcgrxfr.d φ D P
10 tgcgrxfr.f φ F P
11 tgcgrxfr.1 φ B A I C
12 tgcgrxfr.2 φ A - ˙ C = D - ˙ F
13 6 adantr φ P = 1 A P
14 5 adantr φ P = 1 G 𝒢 Tarski
15 9 adantr φ P = 1 D P
16 10 adantr φ P = 1 F P
17 simpr φ P = 1 P = 1
18 1 2 3 14 13 15 16 17 tgldim0itv φ P = 1 A D I F
19 7 adantr φ P = 1 B P
20 8 adantr φ P = 1 C P
21 1 2 3 14 13 19 15 17 13 tgldim0cgr φ P = 1 A - ˙ B = D - ˙ A
22 1 2 3 14 19 20 13 17 16 tgldim0cgr φ P = 1 B - ˙ C = A - ˙ F
23 1 2 3 14 20 13 16 17 15 tgldim0cgr φ P = 1 C - ˙ A = F - ˙ D
24 1 2 4 14 13 19 20 15 13 16 21 22 23 trgcgr φ P = 1 ⟨“ ABC ”⟩ ˙ ⟨“ DAF ”⟩
25 eleq1 e = A e D I F A D I F
26 s3eq2 e = A ⟨“ DeF ”⟩ = ⟨“ DAF ”⟩
27 26 breq2d e = A ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩ ⟨“ ABC ”⟩ ˙ ⟨“ DAF ”⟩
28 25 27 anbi12d e = A e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩ A D I F ⟨“ ABC ”⟩ ˙ ⟨“ DAF ”⟩
29 28 rspcev A P A D I F ⟨“ ABC ”⟩ ˙ ⟨“ DAF ”⟩ e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
30 13 18 24 29 syl12anc φ P = 1 e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
31 5 ad3antrrr φ 2 P g P D F I g D g G 𝒢 Tarski
32 simplr φ 2 P g P D F I g D g g P
33 9 ad3antrrr φ 2 P g P D F I g D g D P
34 6 ad3antrrr φ 2 P g P D F I g D g A P
35 7 ad3antrrr φ 2 P g P D F I g D g B P
36 1 2 3 31 32 33 34 35 axtgsegcon φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B
37 5 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C G 𝒢 Tarski
38 32 ad2antrr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B g P
39 38 ad2antrr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C g P
40 9 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D P
41 simplr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B e P
42 41 ad2antrr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e P
43 simplr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C f P
44 simpllr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D g I e D - ˙ e = A - ˙ B
45 44 simpld φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D g I e
46 simprl φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e g I f
47 1 2 3 37 39 40 42 43 45 46 tgbtwnexch3 φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e D I f
48 6 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C A P
49 8 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C C P
50 10 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C F P
51 simp-5r φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D F I g D g
52 51 simprd φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D g
53 52 necomd φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C g D
54 1 2 3 37 39 40 42 43 45 46 tgbtwnexch φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D g I f
55 51 simpld φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D F I g
56 1 2 3 37 50 40 39 55 tgbtwncom φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D g I F
57 7 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C B P
58 11 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C B A I C
59 44 simprd φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D - ˙ e = A - ˙ B
60 simprr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e - ˙ f = B - ˙ C
61 1 2 3 37 40 42 43 48 57 49 47 58 59 60 tgcgrextend φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D - ˙ f = A - ˙ C
62 12 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C A - ˙ C = D - ˙ F
63 62 eqcomd φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D - ˙ F = A - ˙ C
64 1 2 3 37 40 48 49 39 43 50 53 54 56 61 63 tgsegconeq φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C f = F
65 64 oveq2d φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C D I f = D I F
66 47 65 eleqtrd φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e D I F
67 59 eqcomd φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C A - ˙ B = D - ˙ e
68 64 oveq2d φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e - ˙ f = e - ˙ F
69 60 68 eqtr3d φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C B - ˙ C = e - ˙ F
70 1 2 3 5 6 8 9 10 12 tgcgrcomlr φ C - ˙ A = F - ˙ D
71 70 ad7antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C C - ˙ A = F - ˙ D
72 1 2 4 37 48 57 49 40 42 50 67 69 71 trgcgr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
73 66 72 jca φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
74 31 ad2antrr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B G 𝒢 Tarski
75 35 ad2antrr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B B P
76 8 ad5antr φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B C P
77 1 2 3 74 38 41 75 76 axtgsegcon φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B f P e g I f e - ˙ f = B - ˙ C
78 73 77 r19.29a φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
79 78 ex φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
80 79 reximdva φ 2 P g P D F I g D g e P D g I e D - ˙ e = A - ˙ B e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
81 36 80 mpd φ 2 P g P D F I g D g e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
82 5 adantr φ 2 P G 𝒢 Tarski
83 10 adantr φ 2 P F P
84 9 adantr φ 2 P D P
85 simpr φ 2 P 2 P
86 1 2 3 82 83 84 85 tgbtwndiff φ 2 P g P D F I g D g
87 81 86 r19.29a φ 2 P e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩
88 1 6 tgldimor φ P = 1 2 P
89 30 87 88 mpjaodan φ e P e D I F ⟨“ ABC ”⟩ ˙ ⟨“ DeF ”⟩