Metamath Proof Explorer


Theorem lnopcon

Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopcon TLinOpTContOpxynormTyxnormy

Proof

Step Hyp Ref Expression
1 eleq1 T=ifTLinOpTITContOpifTLinOpTIContOp
2 fveq1 T=ifTLinOpTITy=ifTLinOpTIy
3 2 fveq2d T=ifTLinOpTInormTy=normifTLinOpTIy
4 3 breq1d T=ifTLinOpTInormTyxnormynormifTLinOpTIyxnormy
5 4 rexralbidv T=ifTLinOpTIxynormTyxnormyxynormifTLinOpTIyxnormy
6 1 5 bibi12d T=ifTLinOpTITContOpxynormTyxnormyifTLinOpTIContOpxynormifTLinOpTIyxnormy
7 idlnop ILinOp
8 7 elimel ifTLinOpTILinOp
9 8 lnopconi ifTLinOpTIContOpxynormifTLinOpTIyxnormy
10 6 9 dedth TLinOpTContOpxynormTyxnormy