Metamath Proof Explorer


Theorem lnrot2

Description: Rotating the points defining a line. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses btwnlng1.p P=BaseG
btwnlng1.i I=ItvG
btwnlng1.l L=Line𝒢G
btwnlng1.g φG𝒢Tarski
btwnlng1.x φXP
btwnlng1.y φYP
btwnlng1.z φZP
btwnlng1.d φXY
lnrot2.1 φXYLZ
lnrot2.2 φYZ
Assertion lnrot2 φZXLY

Proof

Step Hyp Ref Expression
1 btwnlng1.p P=BaseG
2 btwnlng1.i I=ItvG
3 btwnlng1.l L=Line𝒢G
4 btwnlng1.g φG𝒢Tarski
5 btwnlng1.x φXP
6 btwnlng1.y φYP
7 btwnlng1.z φZP
8 btwnlng1.d φXY
9 lnrot2.1 φXYLZ
10 lnrot2.2 φYZ
11 eqid distG=distG
12 1 11 2 4 6 5 7 tgbtwncomb φXYIZXZIY
13 biidd φYXIZYXIZ
14 1 11 2 4 6 7 5 tgbtwncomb φZYIXZXIY
15 12 13 14 3orbi123d φXYIZYXIZZYIXXZIYYXIZZXIY
16 3orrot ZXIYXZIYYXIZXZIYYXIZZXIY
17 15 16 bitr4di φXYIZYXIZZYIXZXIYXZIYYXIZ
18 1 3 2 4 6 7 10 5 tgellng φXYLZXYIZYXIZZYIX
19 1 3 2 4 5 6 8 7 tgellng φZXLYZXIYXZIYYXIZ
20 17 18 19 3bitr4d φXYLZZXLY
21 9 20 mpbid φZXLY