Description: log 2 is less than 1 . This is just a weaker form of log2ub when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | log2le1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | log2ub | |
|
2 | 2nn0 | |
|
3 | 3nn0 | |
|
4 | 5nn0 | |
|
5 | 6nn0 | |
|
6 | 2lt3 | |
|
7 | 5lt10 | |
|
8 | 3lt10 | |
|
9 | 2 3 4 5 3 4 6 7 8 | 3decltc | |
10 | 2 4 | deccl | |
11 | 10 3 | deccl | |
12 | 11 | nn0rei | |
13 | 3 5 | deccl | |
14 | 13 4 | deccl | |
15 | 14 | nn0rei | |
16 | 6nn | |
|
17 | 3 16 | decnncl | |
18 | 0nn0 | |
|
19 | 10pos | |
|
20 | 17 4 18 19 | declti | |
21 | 12 15 15 20 | ltdiv1ii | |
22 | 9 21 | mpbi | |
23 | 15 | recni | |
24 | 0re | |
|
25 | 24 20 | gtneii | |
26 | 23 25 | dividi | |
27 | 22 26 | breqtri | |
28 | 2rp | |
|
29 | relogcl | |
|
30 | 28 29 | ax-mp | |
31 | 12 15 25 | redivcli | |
32 | 1re | |
|
33 | 30 31 32 | lttri | |
34 | 1 27 33 | mp2an | |