Metamath Proof Explorer


Theorem log2le1

Description: log 2 is less than 1 . This is just a weaker form of log2ub when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion log2le1 log2<1

Proof

Step Hyp Ref Expression
1 log2ub log2<253365
2 2nn0 20
3 3nn0 30
4 5nn0 50
5 6nn0 60
6 2lt3 2<3
7 5lt10 5<10
8 3lt10 3<10
9 2 3 4 5 3 4 6 7 8 3decltc 253<365
10 2 4 deccl 250
11 10 3 deccl 2530
12 11 nn0rei 253
13 3 5 deccl 360
14 13 4 deccl 3650
15 14 nn0rei 365
16 6nn 6
17 3 16 decnncl 36
18 0nn0 00
19 10pos 0<10
20 17 4 18 19 declti 0<365
21 12 15 15 20 ltdiv1ii 253<365253365<365365
22 9 21 mpbi 253365<365365
23 15 recni 365
24 0re 0
25 24 20 gtneii 3650
26 23 25 dividi 365365=1
27 22 26 breqtri 253365<1
28 2rp 2+
29 relogcl 2+log2
30 28 29 ax-mp log2
31 12 15 25 redivcli 253365
32 1re 1
33 30 31 32 lttri log2<253365253365<1log2<1
34 1 27 33 mp2an log2<1