Metamath Proof Explorer


Theorem logfacrlim2

Description: Write out logfacrlim as a sum of logs. (Contributed by Mario Carneiro, 18-May-2016) (Revised by Mario Carneiro, 22-May-2016)

Ref Expression
Assertion logfacrlim2 x + n = 1 x log x n x 1

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 logexprlim 1 0 x + n = 1 x log x n 1 x 1 !
3 1 2 ax-mp x + n = 1 x log x n 1 x 1 !
4 elfznn n 1 x n
5 4 nnrpd n 1 x n +
6 rpdivcl x + n + x n +
7 5 6 sylan2 x + n 1 x x n +
8 7 relogcld x + n 1 x log x n
9 8 recnd x + n 1 x log x n
10 9 exp1d x + n 1 x log x n 1 = log x n
11 10 sumeq2dv x + n = 1 x log x n 1 = n = 1 x log x n
12 11 oveq1d x + n = 1 x log x n 1 x = n = 1 x log x n x
13 fzfid x + 1 x Fin
14 rpcn x + x
15 rpne0 x + x 0
16 13 14 9 15 fsumdivc x + n = 1 x log x n x = n = 1 x log x n x
17 12 16 eqtrd x + n = 1 x log x n 1 x = n = 1 x log x n x
18 17 mpteq2ia x + n = 1 x log x n 1 x = x + n = 1 x log x n x
19 fac1 1 ! = 1
20 3 18 19 3brtr3i x + n = 1 x log x n x 1