Metamath Proof Explorer


Theorem lpfval

Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion lpfval JToplimPtJ=x𝒫Xy|yclsJxy

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 1 topopn JTopXJ
3 pwexg XJ𝒫XV
4 mptexg 𝒫XVx𝒫Xy|yclsJxyV
5 2 3 4 3syl JTopx𝒫Xy|yclsJxyV
6 unieq j=Jj=J
7 6 1 eqtr4di j=Jj=X
8 7 pweqd j=J𝒫j=𝒫X
9 fveq2 j=Jclsj=clsJ
10 9 fveq1d j=Jclsjxy=clsJxy
11 10 eleq2d j=JyclsjxyyclsJxy
12 11 abbidv j=Jy|yclsjxy=y|yclsJxy
13 8 12 mpteq12dv j=Jx𝒫jy|yclsjxy=x𝒫Xy|yclsJxy
14 df-lp limPt=jTopx𝒫jy|yclsjxy
15 13 14 fvmptg JTopx𝒫Xy|yclsJxyVlimPtJ=x𝒫Xy|yclsJxy
16 5 15 mpdan JToplimPtJ=x𝒫Xy|yclsJxy