Metamath Proof Explorer


Theorem lpi0

Description: The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P=LPIdealR
lpi0.z 0˙=0R
Assertion lpi0 RRing0˙P

Proof

Step Hyp Ref Expression
1 lpival.p P=LPIdealR
2 lpi0.z 0˙=0R
3 eqid BaseR=BaseR
4 3 2 ring0cl RRing0˙BaseR
5 eqid RSpanR=RSpanR
6 5 2 rsp0 RRingRSpanR0˙=0˙
7 6 eqcomd RRing0˙=RSpanR0˙
8 sneq g=0˙g=0˙
9 8 fveq2d g=0˙RSpanRg=RSpanR0˙
10 9 rspceeqv 0˙BaseR0˙=RSpanR0˙gBaseR0˙=RSpanRg
11 4 7 10 syl2anc RRinggBaseR0˙=RSpanRg
12 1 5 3 islpidl RRing0˙PgBaseR0˙=RSpanRg
13 11 12 mpbird RRing0˙P