Metamath Proof Explorer


Theorem lpi0

Description: The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P = LPIdeal R
lpi0.z 0 ˙ = 0 R
Assertion lpi0 R Ring 0 ˙ P

Proof

Step Hyp Ref Expression
1 lpival.p P = LPIdeal R
2 lpi0.z 0 ˙ = 0 R
3 eqid Base R = Base R
4 3 2 ring0cl R Ring 0 ˙ Base R
5 eqid RSpan R = RSpan R
6 5 2 rsp0 R Ring RSpan R 0 ˙ = 0 ˙
7 6 eqcomd R Ring 0 ˙ = RSpan R 0 ˙
8 sneq g = 0 ˙ g = 0 ˙
9 8 fveq2d g = 0 ˙ RSpan R g = RSpan R 0 ˙
10 9 rspceeqv 0 ˙ Base R 0 ˙ = RSpan R 0 ˙ g Base R 0 ˙ = RSpan R g
11 4 7 10 syl2anc R Ring g Base R 0 ˙ = RSpan R g
12 1 5 3 islpidl R Ring 0 ˙ P g Base R 0 ˙ = RSpan R g
13 11 12 mpbird R Ring 0 ˙ P