Metamath Proof Explorer


Theorem lpi1

Description: The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P=LPIdealR
lpi1.b B=BaseR
Assertion lpi1 RRingBP

Proof

Step Hyp Ref Expression
1 lpival.p P=LPIdealR
2 lpi1.b B=BaseR
3 eqid 1R=1R
4 2 3 ringidcl RRing1RB
5 eqid RSpanR=RSpanR
6 5 2 3 rsp1 RRingRSpanR1R=B
7 6 eqcomd RRingB=RSpanR1R
8 sneq g=1Rg=1R
9 8 fveq2d g=1RRSpanRg=RSpanR1R
10 9 rspceeqv 1RBB=RSpanR1RgBB=RSpanRg
11 4 7 10 syl2anc RRinggBB=RSpanRg
12 1 5 2 islpidl RRingBPgBB=RSpanRg
13 11 12 mpbird RRingBP