Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lplnexat.l | |
|
lplnexat.j | |
||
lplnexat.a | |
||
lplnexat.n | |
||
lplnexat.p | |
||
Assertion | lplnexatN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnexat.l | |
|
2 | lplnexat.j | |
|
3 | lplnexat.a | |
|
4 | lplnexat.n | |
|
5 | lplnexat.p | |
|
6 | simp1 | |
|
7 | simp3 | |
|
8 | simp2 | |
|
9 | 6 7 8 | 3jca | |
10 | eqid | |
|
11 | 1 10 4 5 | llncvrlpln2 | |
12 | 9 11 | sylan | |
13 | simpl1 | |
|
14 | simpl3 | |
|
15 | eqid | |
|
16 | 15 4 | llnbase | |
17 | 14 16 | syl | |
18 | simpl2 | |
|
19 | 15 5 | lplnbase | |
20 | 18 19 | syl | |
21 | 15 1 2 10 3 | cvrval3 | |
22 | 13 17 20 21 | syl3anc | |
23 | eqcom | |
|
24 | 23 | anbi2i | |
25 | 24 | rexbii | |
26 | 22 25 | bitrdi | |
27 | 12 26 | mpbid | |