Metamath Proof Explorer


Theorem lplnexatN

Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnexat.l ˙=K
lplnexat.j ˙=joinK
lplnexat.a A=AtomsK
lplnexat.n N=LLinesK
lplnexat.p P=LPlanesK
Assertion lplnexatN KHLXPYNY˙XqA¬q˙YX=Y˙q

Proof

Step Hyp Ref Expression
1 lplnexat.l ˙=K
2 lplnexat.j ˙=joinK
3 lplnexat.a A=AtomsK
4 lplnexat.n N=LLinesK
5 lplnexat.p P=LPlanesK
6 simp1 KHLXPYNKHL
7 simp3 KHLXPYNYN
8 simp2 KHLXPYNXP
9 6 7 8 3jca KHLXPYNKHLYNXP
10 eqid K=K
11 1 10 4 5 llncvrlpln2 KHLYNXPY˙XYKX
12 9 11 sylan KHLXPYNY˙XYKX
13 simpl1 KHLXPYNY˙XKHL
14 simpl3 KHLXPYNY˙XYN
15 eqid BaseK=BaseK
16 15 4 llnbase YNYBaseK
17 14 16 syl KHLXPYNY˙XYBaseK
18 simpl2 KHLXPYNY˙XXP
19 15 5 lplnbase XPXBaseK
20 18 19 syl KHLXPYNY˙XXBaseK
21 15 1 2 10 3 cvrval3 KHLYBaseKXBaseKYKXqA¬q˙YY˙q=X
22 13 17 20 21 syl3anc KHLXPYNY˙XYKXqA¬q˙YY˙q=X
23 eqcom Y˙q=XX=Y˙q
24 23 anbi2i ¬q˙YY˙q=X¬q˙YX=Y˙q
25 24 rexbii qA¬q˙YY˙q=XqA¬q˙YX=Y˙q
26 22 25 bitrdi KHLXPYNY˙XYKXqA¬q˙YX=Y˙q
27 12 26 mpbid KHLXPYNY˙XqA¬q˙YX=Y˙q