Metamath Proof Explorer


Theorem lpolsatN

Description: The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolsat.a A=LSAtomsW
lpolsat.h H=LSHypW
lpolsat.p P=LPolW
lpolsat.w φWX
lpolsat.o φ˙P
lpolsat.q φQA
Assertion lpolsatN φ˙QH

Proof

Step Hyp Ref Expression
1 lpolsat.a A=LSAtomsW
2 lpolsat.h H=LSHypW
3 lpolsat.p P=LPolW
4 lpolsat.w φWX
5 lpolsat.o φ˙P
6 lpolsat.q φQA
7 eqid BaseW=BaseW
8 eqid LSubSpW=LSubSpW
9 eqid 0W=0W
10 7 8 9 1 2 3 islpolN WX˙P˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xH˙˙x=x
11 4 10 syl φ˙P˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xH˙˙x=x
12 5 11 mpbid φ˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xH˙˙x=x
13 simpr3 ˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xH˙˙x=xxA˙xH˙˙x=x
14 fveq2 x=Q˙x=˙Q
15 14 eleq1d x=Q˙xH˙QH
16 2fveq3 x=Q˙˙x=˙˙Q
17 id x=Qx=Q
18 16 17 eqeq12d x=Q˙˙x=x˙˙Q=Q
19 15 18 anbi12d x=Q˙xH˙˙x=x˙QH˙˙Q=Q
20 19 rspcv QAxA˙xH˙˙x=x˙QH˙˙Q=Q
21 6 20 syl φxA˙xH˙˙x=x˙QH˙˙Q=Q
22 simpl ˙QH˙˙Q=Q˙QH
23 13 21 22 syl56 φ˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xH˙˙x=x˙QH
24 12 23 mpd φ˙QH