Metamath Proof Explorer


Theorem lpss3

Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion lpss3 JTopSXTSlimPtJTlimPtJS

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 simp1 JTopSXTSJTop
3 simp2 JTopSXTSSX
4 3 ssdifssd JTopSXTSSxX
5 simp3 JTopSXTSTS
6 5 ssdifd JTopSXTSTxSx
7 1 clsss JTopSxXTxSxclsJTxclsJSx
8 2 4 6 7 syl3anc JTopSXTSclsJTxclsJSx
9 8 sseld JTopSXTSxclsJTxxclsJSx
10 5 3 sstrd JTopSXTSTX
11 1 islp JTopTXxlimPtJTxclsJTx
12 2 10 11 syl2anc JTopSXTSxlimPtJTxclsJTx
13 1 islp JTopSXxlimPtJSxclsJSx
14 2 3 13 syl2anc JTopSXTSxlimPtJSxclsJSx
15 9 12 14 3imtr4d JTopSXTSxlimPtJTxlimPtJS
16 15 ssrdv JTopSXTSlimPtJTlimPtJS