Metamath Proof Explorer


Theorem lsatlss

Description: The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lsatlss.s S=LSubSpW
lsatlss.a A=LSAtomsW
Assertion lsatlss WLModAS

Proof

Step Hyp Ref Expression
1 lsatlss.s S=LSubSpW
2 lsatlss.a A=LSAtomsW
3 eqid BaseW=BaseW
4 eqid LSpanW=LSpanW
5 eqid 0W=0W
6 3 4 5 2 lsatset WLModA=ranvBaseW0WLSpanWv
7 eldifi vBaseW0WvBaseW
8 3 1 4 lspsncl WLModvBaseWLSpanWvS
9 7 8 sylan2 WLModvBaseW0WLSpanWvS
10 9 fmpttd WLModvBaseW0WLSpanWv:BaseW0WS
11 10 frnd WLModranvBaseW0WLSpanWvS
12 6 11 eqsstrd WLModAS