Metamath Proof Explorer


Theorem lshpkrlem6

Description: Lemma for lshpkrex . Show linearlity of G . (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V=BaseW
lshpkrlem.a +˙=+W
lshpkrlem.n N=LSpanW
lshpkrlem.p ˙=LSSumW
lshpkrlem.h H=LSHypW
lshpkrlem.w φWLVec
lshpkrlem.u φUH
lshpkrlem.z φZV
lshpkrlem.x φXV
lshpkrlem.e φU˙NZ=V
lshpkrlem.d D=ScalarW
lshpkrlem.k K=BaseD
lshpkrlem.t ·˙=W
lshpkrlem.o 0˙=0D
lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
Assertion lshpkrlem6 φlKuVvVGl·˙u+˙v=lDGu+DGv

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V=BaseW
2 lshpkrlem.a +˙=+W
3 lshpkrlem.n N=LSpanW
4 lshpkrlem.p ˙=LSSumW
5 lshpkrlem.h H=LSHypW
6 lshpkrlem.w φWLVec
7 lshpkrlem.u φUH
8 lshpkrlem.z φZV
9 lshpkrlem.x φXV
10 lshpkrlem.e φU˙NZ=V
11 lshpkrlem.d D=ScalarW
12 lshpkrlem.k K=BaseD
13 lshpkrlem.t ·˙=W
14 lshpkrlem.o 0˙=0D
15 lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
16 6 adantr φlKuVvVWLVec
17 7 adantr φlKuVvVUH
18 8 adantr φlKuVvVZV
19 simpr2 φlKuVvVuV
20 10 adantr φlKuVvVU˙NZ=V
21 1 2 3 4 5 16 17 18 19 20 11 12 13 14 15 lshpkrlem3 φlKuVvVrUu=r+˙Gu·˙Z
22 simpr3 φlKuVvVvV
23 1 2 3 4 5 16 17 18 22 20 11 12 13 14 15 lshpkrlem3 φlKuVvVsUv=s+˙Gv·˙Z
24 lveclmod WLVecWLMod
25 16 24 syl φlKuVvVWLMod
26 simpr1 φlKuVvVlK
27 1 11 13 12 lmodvscl WLModlKuVl·˙uV
28 25 26 19 27 syl3anc φlKuVvVl·˙uV
29 1 2 lmodvacl WLModl·˙uVvVl·˙u+˙vV
30 25 28 22 29 syl3anc φlKuVvVl·˙u+˙vV
31 1 2 3 4 5 16 17 18 30 20 11 12 13 14 15 lshpkrlem3 φlKuVvVzUl·˙u+˙v=z+˙Gl·˙u+˙v·˙Z
32 3reeanv rUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZrUu=r+˙Gu·˙ZsUv=s+˙Gv·˙ZzUl·˙u+˙v=z+˙Gl·˙u+˙v·˙Z
33 simp1l φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zφ
34 simp1r1 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZlK
35 simp1r2 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZuV
36 simp1r3 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZvV
37 simp2ll φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZrU
38 simp2lr φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZsU
39 simp2r φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZzU
40 38 39 jca φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZsUzU
41 simp31 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zu=r+˙Gu·˙Z
42 simp32 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zv=s+˙Gv·˙Z
43 simp33 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Z
44 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 lshpkrlem5 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
45 33 34 35 36 37 40 41 42 43 44 syl333anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
46 45 3exp φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
47 46 expdimp φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
48 47 rexlimdv φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
49 48 rexlimdvva φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
50 32 49 biimtrrid φlKuVvVrUu=r+˙Gu·˙ZsUv=s+˙Gv·˙ZzUl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv
51 21 23 31 50 mp3and φlKuVvVGl·˙u+˙v=lDGu+DGv