Description: Lemma for lshpkrex . Show linearlity of G . (Contributed by NM, 17-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpkrlem.v | |
|
lshpkrlem.a | |
||
lshpkrlem.n | |
||
lshpkrlem.p | |
||
lshpkrlem.h | |
||
lshpkrlem.w | |
||
lshpkrlem.u | |
||
lshpkrlem.z | |
||
lshpkrlem.x | |
||
lshpkrlem.e | |
||
lshpkrlem.d | |
||
lshpkrlem.k | |
||
lshpkrlem.t | |
||
lshpkrlem.o | |
||
lshpkrlem.g | |
||
Assertion | lshpkrlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.v | |
|
2 | lshpkrlem.a | |
|
3 | lshpkrlem.n | |
|
4 | lshpkrlem.p | |
|
5 | lshpkrlem.h | |
|
6 | lshpkrlem.w | |
|
7 | lshpkrlem.u | |
|
8 | lshpkrlem.z | |
|
9 | lshpkrlem.x | |
|
10 | lshpkrlem.e | |
|
11 | lshpkrlem.d | |
|
12 | lshpkrlem.k | |
|
13 | lshpkrlem.t | |
|
14 | lshpkrlem.o | |
|
15 | lshpkrlem.g | |
|
16 | 6 | adantr | |
17 | 7 | adantr | |
18 | 8 | adantr | |
19 | simpr2 | |
|
20 | 10 | adantr | |
21 | 1 2 3 4 5 16 17 18 19 20 11 12 13 14 15 | lshpkrlem3 | |
22 | simpr3 | |
|
23 | 1 2 3 4 5 16 17 18 22 20 11 12 13 14 15 | lshpkrlem3 | |
24 | lveclmod | |
|
25 | 16 24 | syl | |
26 | simpr1 | |
|
27 | 1 11 13 12 | lmodvscl | |
28 | 25 26 19 27 | syl3anc | |
29 | 1 2 | lmodvacl | |
30 | 25 28 22 29 | syl3anc | |
31 | 1 2 3 4 5 16 17 18 30 20 11 12 13 14 15 | lshpkrlem3 | |
32 | 3reeanv | |
|
33 | simp1l | |
|
34 | simp1r1 | |
|
35 | simp1r2 | |
|
36 | simp1r3 | |
|
37 | simp2ll | |
|
38 | simp2lr | |
|
39 | simp2r | |
|
40 | 38 39 | jca | |
41 | simp31 | |
|
42 | simp32 | |
|
43 | simp33 | |
|
44 | 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 | lshpkrlem5 | |
45 | 33 34 35 36 37 40 41 42 43 44 | syl333anc | |
46 | 45 | 3exp | |
47 | 46 | expdimp | |
48 | 47 | rexlimdv | |
49 | 48 | rexlimdvva | |
50 | 32 49 | biimtrrid | |
51 | 21 23 31 50 | mp3and | |