Metamath Proof Explorer


Theorem lsmdisj3

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙=LSSumG
lsmcntz.s φSSubGrpG
lsmcntz.t φTSubGrpG
lsmcntz.u φUSubGrpG
lsmdisj.o 0˙=0G
lsmdisj.i φS˙TU=0˙
lsmdisj2.i φST=0˙
lsmdisj3.z Z=CntzG
lsmdisj3.s φSZT
Assertion lsmdisj3 φST˙U=0˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙=LSSumG
2 lsmcntz.s φSSubGrpG
3 lsmcntz.t φTSubGrpG
4 lsmcntz.u φUSubGrpG
5 lsmdisj.o 0˙=0G
6 lsmdisj.i φS˙TU=0˙
7 lsmdisj2.i φST=0˙
8 lsmdisj3.z Z=CntzG
9 lsmdisj3.s φSZT
10 1 8 lsmcom2 SSubGrpGTSubGrpGSZTS˙T=T˙S
11 2 3 9 10 syl3anc φS˙T=T˙S
12 11 ineq1d φS˙TU=T˙SU
13 12 6 eqtr3d φT˙SU=0˙
14 incom TS=ST
15 14 7 eqtrid φTS=0˙
16 1 3 2 4 5 13 15 lsmdisj2 φST˙U=0˙