Metamath Proof Explorer


Theorem lsmelval

Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelval.a + ˙ = + G
lsmelval.p ˙ = LSSum G
Assertion lsmelval T SubGrp G U SubGrp G X T ˙ U y T z U X = y + ˙ z

Proof

Step Hyp Ref Expression
1 lsmelval.a + ˙ = + G
2 lsmelval.p ˙ = LSSum G
3 subgrcl T SubGrp G G Grp
4 eqid Base G = Base G
5 4 subgss T SubGrp G T Base G
6 4 subgss U SubGrp G U Base G
7 4 1 2 lsmelvalx G Grp T Base G U Base G X T ˙ U y T z U X = y + ˙ z
8 3 5 6 7 syl2an3an T SubGrp G U SubGrp G X T ˙ U y T z U X = y + ˙ z