Metamath Proof Explorer


Theorem lsmidmOLD

Description: Obsolete proof of lsmidm as of 13-Jan-2024. Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmidmOLD U SubGrp G U ˙ U = U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 eqid Base G = Base G
3 eqid + G = + G
4 2 3 1 lsmval U SubGrp G U SubGrp G U ˙ U = ran x U , y U x + G y
5 4 anidms U SubGrp G U ˙ U = ran x U , y U x + G y
6 3 subgcl U SubGrp G x U y U x + G y U
7 6 3expb U SubGrp G x U y U x + G y U
8 7 ralrimivva U SubGrp G x U y U x + G y U
9 eqid x U , y U x + G y = x U , y U x + G y
10 9 fmpo x U y U x + G y U x U , y U x + G y : U × U U
11 8 10 sylib U SubGrp G x U , y U x + G y : U × U U
12 11 frnd U SubGrp G ran x U , y U x + G y U
13 5 12 eqsstrd U SubGrp G U ˙ U U
14 1 lsmub1 U SubGrp G U SubGrp G U U ˙ U
15 14 anidms U SubGrp G U U ˙ U
16 13 15 eqssd U SubGrp G U ˙ U = U