Metamath Proof Explorer


Theorem lsmsnorb2

Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb . (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypotheses lsmsnorb2.1 B=BaseG
lsmsnorb2.2 +˙=+G
lsmsnorb2.3 ˙=LSSumG
lsmsnorb2.4 ˙=xy|xyBgAx+˙g=y
lsmsnorb2.5 φGMnd
lsmsnorb2.6 φAB
lsmsnorb2.7 φXB
Assertion lsmsnorb2 φX˙A=X˙

Proof

Step Hyp Ref Expression
1 lsmsnorb2.1 B=BaseG
2 lsmsnorb2.2 +˙=+G
3 lsmsnorb2.3 ˙=LSSumG
4 lsmsnorb2.4 ˙=xy|xyBgAx+˙g=y
5 lsmsnorb2.5 φGMnd
6 lsmsnorb2.6 φAB
7 lsmsnorb2.7 φXB
8 eqid opp𝑔G=opp𝑔G
9 8 3 oppglsm ALSSumopp𝑔GX=X˙A
10 8 1 oppgbas B=Baseopp𝑔G
11 eqid +opp𝑔G=+opp𝑔G
12 eqid LSSumopp𝑔G=LSSumopp𝑔G
13 2 8 11 oppgplus g+opp𝑔Gx=x+˙g
14 13 eqeq1i g+opp𝑔Gx=yx+˙g=y
15 14 rexbii gAg+opp𝑔Gx=ygAx+˙g=y
16 15 anbi2i xyBgAg+opp𝑔Gx=yxyBgAx+˙g=y
17 16 opabbii xy|xyBgAg+opp𝑔Gx=y=xy|xyBgAx+˙g=y
18 4 17 eqtr4i ˙=xy|xyBgAg+opp𝑔Gx=y
19 8 oppgmnd GMndopp𝑔GMnd
20 5 19 syl φopp𝑔GMnd
21 10 11 12 18 20 6 7 lsmsnorb φALSSumopp𝑔GX=X˙
22 9 21 eqtr3id φX˙A=X˙