Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb . (Contributed by Thierry Arnoux, 24-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsnorb2.1 | |
|
lsmsnorb2.2 | |
||
lsmsnorb2.3 | |
||
lsmsnorb2.4 | |
||
lsmsnorb2.5 | |
||
lsmsnorb2.6 | |
||
lsmsnorb2.7 | |
||
Assertion | lsmsnorb2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsnorb2.1 | |
|
2 | lsmsnorb2.2 | |
|
3 | lsmsnorb2.3 | |
|
4 | lsmsnorb2.4 | |
|
5 | lsmsnorb2.5 | |
|
6 | lsmsnorb2.6 | |
|
7 | lsmsnorb2.7 | |
|
8 | eqid | |
|
9 | 8 3 | oppglsm | |
10 | 8 1 | oppgbas | |
11 | eqid | |
|
12 | eqid | |
|
13 | 2 8 11 | oppgplus | |
14 | 13 | eqeq1i | |
15 | 14 | rexbii | |
16 | 15 | anbi2i | |
17 | 16 | opabbii | |
18 | 4 17 | eqtr4i | |
19 | 8 | oppgmnd | |
20 | 5 19 | syl | |
21 | 10 11 12 18 20 6 7 | lsmsnorb | |
22 | 9 21 | eqtr3id | |