Description: The product of the ring with a single element is equal to the principal ideal generated by that element. (Contributed by Thierry Arnoux, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsnpridl.1 | |
|
lsmsnpridl.2 | |
||
lsmsnpridl.3 | |
||
lsmsnpridl.4 | |
||
lsmsnpridl.5 | |
||
lsmsnpridl.6 | |
||
Assertion | lsmsnpridl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsnpridl.1 | |
|
2 | lsmsnpridl.2 | |
|
3 | lsmsnpridl.3 | |
|
4 | lsmsnpridl.4 | |
|
5 | lsmsnpridl.5 | |
|
6 | lsmsnpridl.6 | |
|
7 | 2 1 | mgpbas | |
8 | eqid | |
|
9 | 2 8 | mgpplusg | |
10 | 2 | fvexi | |
11 | 10 | a1i | |
12 | ssidd | |
|
13 | 7 9 3 11 12 6 | elgrplsmsn | |
14 | 1 8 4 | rspsnel | |
15 | 5 6 14 | syl2anc | |
16 | 13 15 | bitr4d | |
17 | 16 | eqrdv | |