Metamath Proof Explorer


Theorem lsmsnpridl

Description: The product of the ring with a single element is equal to the principal ideal generated by that element. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmsnpridl.1 B=BaseR
lsmsnpridl.2 G=mulGrpR
lsmsnpridl.3 ×˙=LSSumG
lsmsnpridl.4 K=RSpanR
lsmsnpridl.5 φRRing
lsmsnpridl.6 φXB
Assertion lsmsnpridl φB×˙X=KX

Proof

Step Hyp Ref Expression
1 lsmsnpridl.1 B=BaseR
2 lsmsnpridl.2 G=mulGrpR
3 lsmsnpridl.3 ×˙=LSSumG
4 lsmsnpridl.4 K=RSpanR
5 lsmsnpridl.5 φRRing
6 lsmsnpridl.6 φXB
7 2 1 mgpbas B=BaseG
8 eqid R=R
9 2 8 mgpplusg R=+G
10 2 fvexi GV
11 10 a1i φGV
12 ssidd φBB
13 7 9 3 11 12 6 elgrplsmsn φxB×˙XyBx=yRX
14 1 8 4 rspsnel RRingXBxKXyBx=yRX
15 5 6 14 syl2anc φxKXyBx=yRX
16 13 15 bitr4d φxB×˙XxKX
17 16 eqrdv φB×˙X=KX