Metamath Proof Explorer


Theorem lsmvalx

Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B = Base G
lsmfval.a + ˙ = + G
lsmfval.s ˙ = LSSum G
Assertion lsmvalx G V T B U B T ˙ U = ran x T , y U x + ˙ y

Proof

Step Hyp Ref Expression
1 lsmfval.v B = Base G
2 lsmfval.a + ˙ = + G
3 lsmfval.s ˙ = LSSum G
4 1 2 3 lsmfval G V ˙ = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y
5 4 oveqd G V T ˙ U = T t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y U
6 1 fvexi B V
7 6 elpw2 T 𝒫 B T B
8 6 elpw2 U 𝒫 B U B
9 mpoexga T 𝒫 B U 𝒫 B x T , y U x + ˙ y V
10 rnexg x T , y U x + ˙ y V ran x T , y U x + ˙ y V
11 9 10 syl T 𝒫 B U 𝒫 B ran x T , y U x + ˙ y V
12 mpoeq12 t = T u = U x t , y u x + ˙ y = x T , y U x + ˙ y
13 12 rneqd t = T u = U ran x t , y u x + ˙ y = ran x T , y U x + ˙ y
14 eqid t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y
15 13 14 ovmpoga T 𝒫 B U 𝒫 B ran x T , y U x + ˙ y V T t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y U = ran x T , y U x + ˙ y
16 11 15 mpd3an3 T 𝒫 B U 𝒫 B T t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y U = ran x T , y U x + ˙ y
17 7 8 16 syl2anbr T B U B T t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y U = ran x T , y U x + ˙ y
18 5 17 sylan9eq G V T B U B T ˙ U = ran x T , y U x + ˙ y
19 18 3impb G V T B U B T ˙ U = ran x T , y U x + ˙ y