Metamath Proof Explorer


Theorem lsppr0

Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lsppr0.v V=BaseW
lsppr0.z 0˙=0W
lsppr0.n N=LSpanW
lsppr0.w φWLMod
lsppr0.x φXV
Assertion lsppr0 φNX0˙=NX

Proof

Step Hyp Ref Expression
1 lsppr0.v V=BaseW
2 lsppr0.z 0˙=0W
3 lsppr0.n N=LSpanW
4 lsppr0.w φWLMod
5 lsppr0.x φXV
6 eqid LSSumW=LSSumW
7 1 2 lmod0vcl WLMod0˙V
8 4 7 syl φ0˙V
9 1 3 6 4 5 8 lsmpr φNX0˙=NXLSSumWN0˙
10 2 3 lspsn0 WLModN0˙=0˙
11 4 10 syl φN0˙=0˙
12 11 oveq2d φNXLSSumWN0˙=NXLSSumW0˙
13 1 3 lspsnsubg WLModXVNXSubGrpW
14 4 5 13 syl2anc φNXSubGrpW
15 2 6 lsm01 NXSubGrpWNXLSSumW0˙=NX
16 14 15 syl φNXLSSumW0˙=NX
17 9 12 16 3eqtrd φNX0˙=NX