Metamath Proof Explorer


Theorem lsppr

Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014)

Ref Expression
Hypotheses lsppr.v V=BaseW
lsppr.a +˙=+W
lsppr.f F=ScalarW
lsppr.k K=BaseF
lsppr.t ·˙=W
lsppr.n N=LSpanW
lsppr.w φWLMod
lsppr.x φXV
lsppr.y φYV
Assertion lsppr φNXY=v|kKlKv=k·˙X+˙l·˙Y

Proof

Step Hyp Ref Expression
1 lsppr.v V=BaseW
2 lsppr.a +˙=+W
3 lsppr.f F=ScalarW
4 lsppr.k K=BaseF
5 lsppr.t ·˙=W
6 lsppr.n N=LSpanW
7 lsppr.w φWLMod
8 lsppr.x φXV
9 lsppr.y φYV
10 df-pr XY=XY
11 10 fveq2i NXY=NXY
12 8 snssd φXV
13 9 snssd φYV
14 1 6 lspun WLModXVYVNXY=NNXNY
15 7 12 13 14 syl3anc φNXY=NNXNY
16 eqid LSubSpW=LSubSpW
17 1 16 6 lspsncl WLModXVNXLSubSpW
18 7 8 17 syl2anc φNXLSubSpW
19 1 16 6 lspsncl WLModYVNYLSubSpW
20 7 9 19 syl2anc φNYLSubSpW
21 eqid LSSumW=LSSumW
22 16 6 21 lsmsp WLModNXLSubSpWNYLSubSpWNXLSSumWNY=NNXNY
23 7 18 20 22 syl3anc φNXLSSumWNY=NNXNY
24 1 2 3 4 5 21 6 7 8 9 lsmspsn φvNXLSSumWNYkKlKv=k·˙X+˙l·˙Y
25 24 eqabdv φNXLSSumWNY=v|kKlKv=k·˙X+˙l·˙Y
26 15 23 25 3eqtr2d φNXY=v|kKlKv=k·˙X+˙l·˙Y
27 11 26 eqtrid φNXY=v|kKlKv=k·˙X+˙l·˙Y