Metamath Proof Explorer


Theorem lspprel

Description: Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015)

Ref Expression
Hypotheses lsppr.v V=BaseW
lsppr.a +˙=+W
lsppr.f F=ScalarW
lsppr.k K=BaseF
lsppr.t ·˙=W
lsppr.n N=LSpanW
lsppr.w φWLMod
lsppr.x φXV
lsppr.y φYV
Assertion lspprel φZNXYkKlKZ=k·˙X+˙l·˙Y

Proof

Step Hyp Ref Expression
1 lsppr.v V=BaseW
2 lsppr.a +˙=+W
3 lsppr.f F=ScalarW
4 lsppr.k K=BaseF
5 lsppr.t ·˙=W
6 lsppr.n N=LSpanW
7 lsppr.w φWLMod
8 lsppr.x φXV
9 lsppr.y φYV
10 1 2 3 4 5 6 7 8 9 lsppr φNXY=v|kKlKv=k·˙X+˙l·˙Y
11 10 eleq2d φZNXYZv|kKlKv=k·˙X+˙l·˙Y
12 id Z=k·˙X+˙l·˙YZ=k·˙X+˙l·˙Y
13 ovex k·˙X+˙l·˙YV
14 12 13 eqeltrdi Z=k·˙X+˙l·˙YZV
15 14 rexlimivw lKZ=k·˙X+˙l·˙YZV
16 15 rexlimivw kKlKZ=k·˙X+˙l·˙YZV
17 eqeq1 v=Zv=k·˙X+˙l·˙YZ=k·˙X+˙l·˙Y
18 17 2rexbidv v=ZkKlKv=k·˙X+˙l·˙YkKlKZ=k·˙X+˙l·˙Y
19 16 18 elab3 Zv|kKlKv=k·˙X+˙l·˙YkKlKZ=k·˙X+˙l·˙Y
20 11 19 bitrdi φZNXYkKlKZ=k·˙X+˙l·˙Y