Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lss0ss
Metamath Proof Explorer
Description: The zero subspace is included in every subspace. ( sh0le analog.)
(Contributed by NM , 27-Mar-2014) (Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
lss0cl.z
⊢ 0 ˙ = 0 W
lss0cl.s
⊢ S = LSubSp ⁡ W
Assertion
lss0ss
⊢ W ∈ LMod ∧ X ∈ S → 0 ˙ ⊆ X
Proof
Step
Hyp
Ref
Expression
1
lss0cl.z
⊢ 0 ˙ = 0 W
2
lss0cl.s
⊢ S = LSubSp ⁡ W
3
1 2
lss0cl
⊢ W ∈ LMod ∧ X ∈ S → 0 ˙ ∈ X
4
3
snssd
⊢ W ∈ LMod ∧ X ∈ S → 0 ˙ ⊆ X