Metamath Proof Explorer


Theorem ltadd2

Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltadd2 ABCA<BC+A<C+B

Proof

Step Hyp Ref Expression
1 axltadd ABCA<BC+A<C+B
2 oveq2 A=BC+A=C+B
3 2 a1i ABCA=BC+A=C+B
4 axltadd BACB<AC+B<C+A
5 4 3com12 ABCB<AC+B<C+A
6 3 5 orim12d ABCA=BB<AC+A=C+BC+B<C+A
7 6 con3d ABC¬C+A=C+BC+B<C+A¬A=BB<A
8 simp3 ABCC
9 simp1 ABCA
10 8 9 readdcld ABCC+A
11 simp2 ABCB
12 8 11 readdcld ABCC+B
13 axlttri C+AC+BC+A<C+B¬C+A=C+BC+B<C+A
14 10 12 13 syl2anc ABCC+A<C+B¬C+A=C+BC+B<C+A
15 axlttri ABA<B¬A=BB<A
16 9 11 15 syl2anc ABCA<B¬A=BB<A
17 7 14 16 3imtr4d ABCC+A<C+BA<B
18 1 17 impbid ABCA<BC+A<C+B