Metamath Proof Explorer


Theorem ltaddnq

Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ltaddnq A𝑸B𝑸A<𝑸A+𝑸B

Proof

Step Hyp Ref Expression
1 id x=Ax=A
2 oveq1 x=Ax+𝑸y=A+𝑸y
3 1 2 breq12d x=Ax<𝑸x+𝑸yA<𝑸A+𝑸y
4 oveq2 y=BA+𝑸y=A+𝑸B
5 4 breq2d y=BA<𝑸A+𝑸yA<𝑸A+𝑸B
6 1lt2nq 1𝑸<𝑸1𝑸+𝑸1𝑸
7 ltmnq y𝑸1𝑸<𝑸1𝑸+𝑸1𝑸y𝑸1𝑸<𝑸y𝑸1𝑸+𝑸1𝑸
8 6 7 mpbii y𝑸y𝑸1𝑸<𝑸y𝑸1𝑸+𝑸1𝑸
9 mulidnq y𝑸y𝑸1𝑸=y
10 distrnq y𝑸1𝑸+𝑸1𝑸=y𝑸1𝑸+𝑸y𝑸1𝑸
11 9 9 oveq12d y𝑸y𝑸1𝑸+𝑸y𝑸1𝑸=y+𝑸y
12 10 11 eqtrid y𝑸y𝑸1𝑸+𝑸1𝑸=y+𝑸y
13 8 9 12 3brtr3d y𝑸y<𝑸y+𝑸y
14 ltanq x𝑸y<𝑸y+𝑸yx+𝑸y<𝑸x+𝑸y+𝑸y
15 13 14 imbitrid x𝑸y𝑸x+𝑸y<𝑸x+𝑸y+𝑸y
16 15 imp x𝑸y𝑸x+𝑸y<𝑸x+𝑸y+𝑸y
17 addcomnq x+𝑸y=y+𝑸x
18 vex xV
19 vex yV
20 addcomnq r+𝑸s=s+𝑸r
21 addassnq r+𝑸s+𝑸t=r+𝑸s+𝑸t
22 18 19 19 20 21 caov12 x+𝑸y+𝑸y=y+𝑸x+𝑸y
23 16 17 22 3brtr3g x𝑸y𝑸y+𝑸x<𝑸y+𝑸x+𝑸y
24 ltanq y𝑸x<𝑸x+𝑸yy+𝑸x<𝑸y+𝑸x+𝑸y
25 24 adantl x𝑸y𝑸x<𝑸x+𝑸yy+𝑸x<𝑸y+𝑸x+𝑸y
26 23 25 mpbird x𝑸y𝑸x<𝑸x+𝑸y
27 3 5 26 vtocl2ga A𝑸B𝑸A<𝑸A+𝑸B