Metamath Proof Explorer


Theorem ltmul1

Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltmul1 ABC0<CA<BAC<BC

Proof

Step Hyp Ref Expression
1 ltmul1a ABC0<CA<BAC<BC
2 1 ex ABC0<CA<BAC<BC
3 oveq1 A=BAC=BC
4 3 a1i ABC0<CA=BAC=BC
5 ltmul1a BAC0<CB<ABC<AC
6 5 ex BAC0<CB<ABC<AC
7 6 3com12 ABC0<CB<ABC<AC
8 4 7 orim12d ABC0<CA=BB<AAC=BCBC<AC
9 8 con3d ABC0<C¬AC=BCBC<AC¬A=BB<A
10 simp1 ABC0<CA
11 simp3l ABC0<CC
12 10 11 remulcld ABC0<CAC
13 simp2 ABC0<CB
14 13 11 remulcld ABC0<CBC
15 12 14 lttrid ABC0<CAC<BC¬AC=BCBC<AC
16 10 13 lttrid ABC0<CA<B¬A=BB<A
17 9 15 16 3imtr4d ABC0<CAC<BCA<B
18 2 17 impbid ABC0<CA<BAC<BC