Metamath Proof Explorer


Theorem ltmul1a

Description: Lemma for ltmul1 . Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 15-May-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltmul1a ABC0<CA<BAC<BC

Proof

Step Hyp Ref Expression
1 simpl2 ABC0<CA<BB
2 simpl1 ABC0<CA<BA
3 1 2 resubcld ABC0<CA<BBA
4 simpl3l ABC0<CA<BC
5 simpr ABC0<CA<BA<B
6 2 1 posdifd ABC0<CA<BA<B0<BA
7 5 6 mpbid ABC0<CA<B0<BA
8 simpl3r ABC0<CA<B0<C
9 3 4 7 8 mulgt0d ABC0<CA<B0<BAC
10 1 recnd ABC0<CA<BB
11 2 recnd ABC0<CA<BA
12 4 recnd ABC0<CA<BC
13 10 11 12 subdird ABC0<CA<BBAC=BCAC
14 9 13 breqtrd ABC0<CA<B0<BCAC
15 2 4 remulcld ABC0<CA<BAC
16 1 4 remulcld ABC0<CA<BBC
17 15 16 posdifd ABC0<CA<BAC<BC0<BCAC
18 14 17 mpbird ABC0<CA<BAC<BC