Metamath Proof Explorer


Theorem ltmuldiv2

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion ltmuldiv2 ABC0<CCA<BA<BC

Proof

Step Hyp Ref Expression
1 recn AA
2 recn CC
3 mulcom ACAC=CA
4 1 2 3 syl2an ACAC=CA
5 4 adantrr AC0<CAC=CA
6 5 3adant2 ABC0<CAC=CA
7 6 breq1d ABC0<CAC<BCA<B
8 ltmuldiv ABC0<CAC<BA<BC
9 7 8 bitr3d ABC0<CCA<BA<BC