Metamath Proof Explorer


Theorem ltnltne

Description: Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion ltnltne A B A < B ¬ B < A ¬ B = A

Proof

Step Hyp Ref Expression
1 ltnle A B A < B ¬ B A
2 leloe B A B A B < A B = A
3 2 ancoms A B B A B < A B = A
4 3 notbid A B ¬ B A ¬ B < A B = A
5 ioran ¬ B < A B = A ¬ B < A ¬ B = A
6 5 a1i A B ¬ B < A B = A ¬ B < A ¬ B = A
7 1 4 6 3bitrd A B A < B ¬ B < A ¬ B = A